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Abstract—The use of imitation learning to learn a single policy
for a complex task that has multiple modes or hierarchical
structure can be challenging. In fact, previous work has shown
that learning separate policies for each mode or sub-task can
greatly improve the performance of imitation learning. In this
work, we model the interaction between sub-tasks and their
resulting state-action trajectory sequences as a directed graphical
model. We propose a new algorithm based on the generative
adversarial imitation learning framework which learns sub-
task policies from unsegmented demonstrations. Our approach
maximizes the causal information flow in the graphical model
between sub-task latent variables and their generated trajectories.
We also show how our approach connects with existing ‘Options’
framework commonly used to learn hierarchical policies.

I. INTRODUCTION

Complex human activities can often be broken down into
various simpler sub-activities or sub-tasks that can serve as the
basic building blocks for completing a variety of complicated
tasks. For instance, when driving a car, a driver may perform
several simpler sub-tasks such as driving straight in a lane,
changing lanes, executing a turn and braking, in different orders
and for varying times depending on the source, destination,
traffic conditions etc. Using imitation learning to learn one
monolithic policy for each activity can be challenging as it
ignores the shared sub-structure among the various activities. In
this work, we develop an imitation learning framework that can
learn a policy for each of these sub-tasks given unsegmented
activity demonstrations and also learn a macro-policy which
dictates switching from one sub-task policy to another. Learning
sub-task specific policies has the benefit of shared learning.
Each such sub-task policy also needs to specialize over a
restricted state space, thus making the learning problem easier.

Previous works in imitation learning [6, 3] focus on
learning each sub-task specific policy using segmented expert
demonstrations by modeling the variability in each sub-task
policy using a latent variable. This latent variable is inferred
by enforcing high mutual information between the latent
variable and expert demonstrations. This information theoretic
perspective is equivalent to the graphical model shown in
Figure 1 (Left), where the node c represents the latent variable.
However, since learning sub-task policies requires isolated
demonstrations for each sub-task this setup is difficult to scale
to many real world scenarios where providing such segmented
trajectories is cumbersome. Further, this setup does not learn
a macro-policy to combine the learned sub-task policies in
meaningful ways to achieve different tasks.

In our work we aim to learn each sub-task policy directly
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Fig. 1: Left: Graphical model used in Info-GAIL [6]. Right:
Causal model in this work. The latent code causes the policy
to produce a trajectory. The current trajectory, and latent code
produce the next latent code

from unsegmented activity demonstrations. For example, given
a task consisting of three sub-tasks — A, B and C, we wish to
learn a policy to complete sub-task A, learn when to transition
from A to B, finish sub-task B and so on. To achieve this
we use a causal graphical model, which can be represented
as a Bayesian Network as shown in Figure 1 (Right). The
nodes ct denote latent variables which indicate the currently
active sub-task and the nodes τt denote the state-action pair at
time t. We consider as given, a set of expert demonstrations,
each of which is represented by τ = {τ1, · · · , τT } and has a
corresponding sequence of latent factors c = {c1, · · · , cT−1}.
The sub-activity at time t dictates what state-action pair was
generated at time t. The previous sub-task and the current state-
action pair together cause the selection of the next sub-task.

As we discuss in Section III, extending the use of mutual
information to learn sub-task policies from unsegmented
demonstrations is problematic, as it requires learning the
macro-policy as a conditional probability distribution which
depends on the unobserved future. This unobserved future
is unknown during earlier points of interaction (Figure 1).
To alleviate this, in our work we aim to force the policy to
generate trajectories that maximize the directed information
or causal information [7] flow from trajectories to latent
factors of variation within the trajectories instead of mutual
information. Using causal information requires us to learn a
causally conditioned probability distribution [5] which depends
only on the observed past while allowing the unobserved future
to be sequentially revealed. Further, since there exists feedback
in our causal graphical model i.e., information flows from the
latent variables to trajectories and vice versa, causal information
also provides a better upper bound on this information flow
between the latent variables and expert trajectories than does
the conventional mutual information [7, 5].

We also draw connections with existing work on learning
sub-task policies using imitation learning with the options
framework [9, 2]. We show that our work, while derived using
the information theoretic perspective of maximizing causal



information, bears a close resemblance to applying the options
framework in a generative adversarial imitation setting. Thus,
our approach combines the benefits of learning hierarchical
policies using the options framework with the robustness of
generative adversarial imitation learning, helping overcome
problems such as compounding errors that plague behaviour
cloning.

In summary, the main contributions of our work include:
• We extend existing generative adversarial imitation learn-

ing frameworks to allow for learning of sub-task specific
policies by maximizing causal information in a causal
graph of sub-activity latent variables and observed trajec-
tory variables.

• We draw connections between previous works on imitation
learning with sub-task policies using options and show
that our proposed approach resembles learning of options
in a generative adversarial setting.

II. RELATED WORK

A. Imitation Learning

Imitation Learning [8] aims at learning policies that can
mimic expert behaviours from demonstrations. Modeling the
problem as a Markov Decision Process (MDP), the goal in
imitation learning is to learn a policy π(a|s), which defines
the conditional distribution over actions a ∈ A given the state
s ∈ S, from state-action trajectories τ = (s0, a0, · · · , sT )
of expert behaviour. Recently, [4] introduced an imitation
learning framework called Generative Adversarial Imitation
Learning (GAIL) that is able to learn policies for complex
high-dimensional physics-based control tasks. The reduce
the imitation learning problem into an adversarial learning
framework, for which they utilize Generative Adversarial
Networks (GAN). The generator network of the GAN represents
the agent’s policy π while the discriminator network serves
as a local reward function and learns to differentiate between
state-action pairs from the expert policy πE and from the
agent’s policy π. Mathematically, it is equivalent to solving
the following optimization problem,

min
π

max
D

Eπ[logD(s, a)] + EπE
[1− logD(s, a)]− λH(π)

InfoGAIL [6] and [3] solve the problem of learning from
policies generated by a mixture of experts. They introduce a
latent variable c into the policy function π(a|s, c) to separate
different type of behaviours present in the demonstration. To
incentivize the network to use the latent variable, they utilize an
information-theoretic regularization enforcing that there should
be high mutual information between c and the state-action pairs
in the generated trajectory, a concept that was first introduced
in InfoGAN [1]. They introduce a variational lower bound
L1(π,Q) of the mutual information I(c; τ) to the loss function
in GAIL.

L1(π,Q) = Ec∼p(c),a∼π(·|s,c) logQ(c|τ) +H(c) ≤ I(c; τ)

The modified objective can then be given as,

min
π,q

max
D

Eπ[logD(s, a)] + EπE
[1− logD(s, a)]

−λ1L1(π, q)− λ2H(π)

InfoGAIL models variations between different trajectories as
the latent codes correspond to trajectories coming from different
demonstrators. In contrast, we aim to model intra-trajectory
variations and latent codes in our work correspond to sub-tasks
(variations) within a demonstration. In section III, we discuss
why using a mutual information based loss is in-feasible in
our problem setting and describe our proposed approach.

B. Options

Consider an MDP with states s ∈ S and actions a ∈ A.
Under the options framework [9], an option, indexed by o ∈ O
consists of a sub-policy π(a|s, o), a termination policy π(b|s, ō)
and an option activation policy π(o|s). After an option is
initiated, actions are generated by the sub-policy until the
option is terminated and a new option is selected. In [2] the
authors formulate the options framework as a probabilistic
graphical model where options are treated as latent variables
which are then learned from expert data. The option policies
(π(a|s, o)) are analogous to sub-task policies in our work, we
connect our work to this existing method and show that our
method can be seen as a generative adversarial variant of the
approach in [2].

III. PROPOSED APPROACH

As mentioned in the previous section, while prior approaches
can learn to disambiguate the multiple modalities in the
demonstration of a sub-task and learn to imitate them, they
cannot learn to imitate demonstrations of unsegmented long
tasks that are formed by a combination of many small sub-tasks.
To learn such sub-task policies from unsegmented gestures we
use the graphical model in Figure 1 (Right), i.e., consider a
set of expert demonstrations, each of which is represented by
τ = {τ1, · · · , τT } where τt is the state-action pair observed at
time t. Each such demonstration has a corresponding sequence
of latent variables c = {c1, · · · , cT−1} which denote the sub-
activity in the demonstration at any given time step.

As noted before, previous approaches [6, 3] model the expert
sub-task demonstrations using only a single latent variable.
To enforce the model to use this latent variable, previous
approaches propose to maximize the mutual information
between the demonstrated sequence of state-action pairs and
the latent embedding of the nature of the sub-activity. This is
achieved by adding a lower bound to the mutual information
between the latent variables and expert demonstrations. This
variational lower bound of the mutual information is then
combined with the the adversarial loss for imitation learning
proposed in [4]. Extending this to our setting, where we have
a sequence of latent variables c, yields the following lower



bound on the mutual information,

L(π, q) =
∑
t

Ec1:t∼p(c1:t),at−1∼π(·|st−1,c1:t−1)

[
log q(ct|c1:t−1, τ )

]
+H(c) ≤ I(τ ; c)

(1)

Observe that the dependence of q on the entire trajectory τ
precludes the use of such a distribution at test time, where only
the trajectory up to the current time is known. To overcome
this limitation, in this work we propose to force the policy
to generate trajectories that maximize the directed or causal
information flow from trajectories to the sequence of latent sub-
activity variables instead. As we show below, by using causal
information instead of mutual information, we can replace the
dependence on τ with a dependence on the trajectory generated
up to current time t.

The causal information flow from a sequence X to Y is
given by,

I(X → Y ) = H(Y )−H(Y ‖X)

where H(Y ‖X) is the causally-conditioned entropy. Re-
placing X and Y with the sequences τ and c gives,

I(τ → c) = H(c)−H(c‖τ )

= H(c)−
∑
t

H(ct|c1:t−1, τ1:t)

= H(c) +
∑
t

∑
c1:t−1,τ1:t

[
p(c1:t−1, τ1:t)

∑
ct

p(ct|c1:t−1, τ1:t) log p(ct|c1:t−1, τ1:t)
]

(2)

A variational lower bound, L1(π, q) of the causal infor-
mation, I(τ → c) which uses an approximate posterior
q(ct|c1:t−1, τ1:t) instead of the true posterior p(ct|c1:t−1, τ1:t)
can then be derived to get,

L1(π, q) =
∑
t

Ec1:t∼p(c1:t),at−1∼π(·|st−1,c1:t−1)

[
log q(ct|c1:t−1, τ1:t)

]
+H(c) ≤ I(τ → c)

(3)

Thus, by maximizing causal information instead of mutual
information, we can learn a posterior distribution over the next
latent factor c given the latent factors discovered up to now
and the trajectory followed up to now, thereby removing the
dependence on the future trajectory. In practice, we do not
consider the H(c) term. This gives us the objective,

min
π,q

max
D

Eπ[logD(s, a)] + EπE
[1− logD(s, a)]

− λ1L1(π, q)− λ2H(π) (4)

We call this approach Causal-Info GAIL. Notice, that to
compute the loss in equation 3, we need to sample from the

s0 c-1 s1 c0 s2 c1 sT-1 cT-2

MLP MLP MLP MLP

c0 c1 c2 cT-1

s0 c0 s1 c1 s2 c2 sT-1 cT-1

MLP MLP MLP MLP

a0 a1 a2 aT-1

Fig. 2: VAE pre-training step. The VAE encoder uses the current
state (st), and previous latent variable (ct−1) to produce the
current latent variable (ct). The decoder reconstructs the action
(at) using st and ct.

prior distribution p(c1:t). In order to estimate this distribution,
we train a variational auto-encoder (VAE) on the expert
trajectories. Figure 2 shows the design of the VAE pictorially.
We use the following objective, which maximizes the lower
bound of the probability of the trajectories p(τ ), to train our
VAE,

LVAE(π, q; τi) = −
∑
t

Ect∼q
[

log π(at|st, c1:t)
]

+
∑
t

DKL(q(ct|c1:t−1, τ1:t)‖p(ct|c1:t−1)) (5)

We can then use q to obtain samples of latent variable
sequence c by using the expert demonstrations.

A. Connection with options framework

In [2] the authors provide a probabilistic perspective of the
options framework. Although, [2] consider separate termination
and option latent variables (bt and ot), for the purpose of
comparison, we collapse them into a single latent variable ct,
similar to our framework with a distribution p(ct|st, ct−1). The
lower-bound derived in [2] which is maximized using EM can
then be written as (suppressing dependence on parameters),

p(τ) ≥
∑
t

∑
ct−1:t

p(ct−1:t|τ) log p(ct|st, ct−1))

+
∑
t

∑
ct

p(ct|τ) log π(at|st, ct) (6)

Note that the first term in Equation (6) i.e., the expectation
over the distribution log p(ct|st, ct−1) is the same as Equa-
tion (3) of our proposed approach with a one-step Markov
assumption and a conditional expectation with given expert
trajectories instead of an expectation with generated trajectories.
The second term in Equation (6) i.e., the expectation over
log π(at|st, ct) is replaced by the GAIL loss in Equation (4).
Our proposed Causal-Info GAIL can be therefore be considered
as the generative adversarial variant of imitation learning using
the options framework. The VAE behaviour cloning pre-training
step in Equation (5) is exactly equivalent to Equation (6), where
we use variational inference instead of EM. Thus, our approach
combines the benefits of both behavior cloning and generative
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Fig. 3: Results on the Four Rooms environment. Each figure
shows results for a different latent variable. The arrows in each
cell indicate the direction (action) with highest probability in
that state and using the given latent variable.

adversarial imitation learning. Using GAIL enables learning
of robust policies that do not suffer from the problem of
compounding errors. At the same time, conditioning GAIL on
latent codes learned from the behavior cloning step prevents
the issue of mode collapse in GANs.

IV. EXPERIMENTS

A. Environment

We test our approach on a grid world environment. The
environment is a 15 × 11 grid and consists of four rooms
connected via corridors as shown in Figures 3 and 4. The
agent spawns at a random location in the grid at the beginning
of each episode. One of the four rooms is then selected at
random and an apple is placed at the centre of the room. The
goal of the agent is to find the shortest path to the apple using
four actions — up, down, left and right. Expert trajectories
were created using Dijkstra’s shortest path algorithm.

B. Results

Figure 3 shows sub-task policies learned by our approach.
Each of the four plots corresponds to a different value of the
latent variable. The arrow at every state in the grid in each plot
shows the agent action (direction) with the highest probability
in that state for that latent variable. In the discussion that
follows, we label the rows from 1 to 4 starting from the room
at the top left and moving in the clockwise direction.

Notice how the different latent variables correspond to
different sub-tasks. For e.g., the latent code in Figure 3(b)
learns the sub-task of moving from room 1 to room 3 and
from room 2 to room 4 and the code in Figure 3(c) learns the

(a) (b)

Fig. 4: Expert and generated trajectories in the Four Rooms
environment. Star (*) represents the start state. The expert
trajectory is shown in red. The color of the generated trajectory
represents the latent code used by the policy at each time step.

opposite sub-tasks. The code in Figure 3(d) learns the sub-task
of moving from rooms 2 and 4 to the horizontal corridor.

Figure 4 shows two examples of how the macro-policy
switches between various latent codes to achieve the desired
goals of reaching the apples in rooms 1 and 2 respectively.
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