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Abstract: Leveraging sensing modalities across diverse spatial and temporal res-
olutions can improve performance of robotic manipulation tasks. Multi-spatial
resolution sensing provides hierarchical information captured at different spa-
tial scales and enables both coarse and precise motions. Simultaneously multi-
temporal resolution sensing enables the agent to exhibit high reactivity and real-
time control. In this work, we propose a framework, MResT (Multi-Resolution
Transformer), for learning generalizable language-conditioned multi-task policies
that utilize sensing at different spatial and temporal resolutions using networks of
varying capacities to effectively perform real time control of precise and reactive
tasks. We leverage off-the-shelf pretrained vision-language models to operate on
low-frequency global features along with small non-pretrained models to adapt
to high frequency local feedback. Through extensive experiments in 3 domains
(coarse, precise and dynamic manipulation tasks), we show that ourT approach
significantly improves (2× on average) over recent multi-task baselines. Further,
our approach generalizes well to visual and geometric variations in target objects
and to varying interaction forces.

1 Introduction

Performing robotic manipulation tasks in the real world often requires using sensing modalities at
different spatial resolutions. For instance, for peg-insertion, the robot can use a statically-mounted
third-person camera (low spatial resolution or global information) to reach close to the hole, use
a wrist-mounted first-person camera for finer alignment, and finally use proprioception and force-
feedback for insertion (high spatial resolution or local information). Additionally, each sensing
modality can be utilized at a different temporal resolution. For example, for coarse quasi-static
subtasks (“reach hole”), using third-person camera images at a low frequency can be sufficient.
However, finer reactive subtasks (“insert peg”), might require high-frequency force-torque feedback.
Based on this insight, we propose a multi-resolution (spatial and temporal resolution) sensor fusion
approach for coarse quasi-static as well as precise reactive manipulation tasks.

Multi-resolution sensor fusion can enable generalization to novel visual-semantic targets. For in-
stance, by utilizing global information from third-person camera images only for coarse localization
and relying on local information from in-hand cameras and force-torque feedback for finer motions,
the policy can learn to generalize to novel objects. Previous approaches to learning generalizable
policies either require extensive data collection [1, 2, 3] or rely on pretrained models [4, 5, 6, 7]
for policy adaptation [8]. However, such approaches typically utilize a single sensory modality,
while others that incorporate multiple sensors do not prioritize generalization [9]. In our work,
we avoid extensive data collection and instead leverage pretrained vision-language models in our
multi-resolution approach to learning generalizable language-conditioned multi-task policies.
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Figure 1: Our proposed approach uses sensing at different spatial and temporal resolutions for real time control
of coarse, precise and dynamic tasks while enabling generalization to novel visual features and interactions.

Although pretrained vision or vision-language models (VLMs) provide impressive generalization
capabilities and enable learning language-conditioned multi-task policies, using large VLMs can
have certain disadvantages. First, given their large size (e.g. Flamingo has 80B parameters [6]), they
have slow inference which makes them unusable for real-time closed-loop control which is necessary
for reactive tasks. Second, since pre-trained models are often trained on out-of-domain data, using
them to solve in-domain manipulation tasks (especially precise tasks) may require finetuning [10].
However, task-specific finetuning can make models less robust with reduced generalization [11].

To overcome the above challenges of utilizing large pretrained VLMs for real-time control of reac-
tive tasks, we propose a framework that incorporates different capacity networks (that operate on dif-
ferent sensing modalities) at different frequencies. Specifically, we use large pretrained VLMs with
slow inference at a lower frequency while small networks with fast inference at a higher frequency.
Our low-frequency pretrained VLMs operate on statically mounted third-person views and can pro-
vide global coarse feedback (such as approximate object locations) that is usually only needed at a
low rate. On the other hand, we propose using small trained-from-scratch models with first-person
camera views and force-torque data to obtain the high-frequency fine-grained feedback necessary
to perform precise and reactive tasks. Further, to overcome the challenge of loss in generalization
when finetuning pre-trained VLMs, we freeze the pretrained VLMs to avoid losing their robustness
and maintain their generalization abilities. Overall main contributions include:

• a framework for learning generalizable multi-task policies that incorporates multiple sen-
sory modalities to capture global to local spatial information,

• combine sensor modalities at different frequencies to avoid bottlenecks and enable reactive
control which we show empirically is essential for dynamic tasks,

• comprehensive experiments across 3 domains (and 2 real-world tasks) that include coarse,
precise and dynamic manipulations tasks, and

• effective generalization across semantic task variations in both simulation and real-world.

2 Related work

Vision-Language Pretrained Models for Robot Manipulation: Many prior works combine vi-
sion and language for robotic tasks. While early works focus on tabula-rasa learning [12, 13, 14],
more recent works, use pretrained large language models (LLMs) and show efficient learning and
improved generalization for robotics tasks [15, 16, 17, 18, 19]. Many recent works also combine
large general-purpose pretrained vision or vision-language models (VLMs) [4, 6, 20] for manipula-
tion [21, 22, 8, 10, 23, 24, 25, 26, 27]. Our work is more closely related to these latter works in that
we also use pretrained VLMs for robot manipulation. Among these works, many works only use
language for task-specification and do not focus on the generalization provided by pretrained mod-
els [26, 27]. Additionally, other works adapt the pretrained representation for the downstream task
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Figure 2: Overall architecture: Global low frequency information is extracted from third-person camera im-
ages using slow inference networks, local high frequency information is extracted from first-person camera
images and proprioceptive, force-torque feedback using fast inference networks. These sensing modalities are
then fused at different frequencies to enable real time high frequency control.

[24, 10, 28]. However, as we show empirically, such updates lead to representation drift and a loss of
robustness for the pretrained general-purpose VLM. Hence, we propose not updating the pretrained
representations. While [25, 8] use frozen VLMs, [25] only uses pretrained VLM as an open-world
object detector to get pixel targets for the task at the first episode step. On the other hand, [8] uses
the pretrained VLM with templated pick-and-place actions for manipulation. By contrast, we use
VLMs in our multi-resolution framework with continuous feedback for reactive manipulation tasks.

Multi-Spatial Resolution for Robot Manipulation: Many prior works use multiple sensor modal-
ities for robot manipulation, wherein each modality operates at a different spatial resolution. For
instance, prior works often combine visual (low spatial resolution) and proprioceptive (high spatial
resolution) feedback [29, 30, 31], use wrist-mounted cameras for visual servoing [32, 33, 34] or
for contact-rich manipulation tasks [35, 36, 37, 38], while other works focus on combining vision
and haptic sensing [39, 40, 41, 42]. Our work is similar to the first set of works i.e. we use both
third person and first person cameras for precise manipulation. However, unlike most prior works
[35, 38] which focus on single-task settings, we focus on multi-task settings and fuse multiple sens-
ing modalities at different resolutions.

Multi-Temporal Resolution for Robot Manipulation: Learning reactive policies requires the
robot to operate at high frequencies. Some recent works in robot manipulation focus on learning
policies at different temporal resolutions. For instance, [43] decompose a manipulation task into
different phases (e.g. visual reaching phase and tactile interaction phase) and learn separate policies
for each phase as well as a blending policy. While [44] avoid the discrete formulation of an MDP
and instead learn a continuous differential equation [45, 46] to model the low resolution features. By
contrast, we use the discrete formulation and instead of decomposing policies into different phases
we reuse features from low-resolution signals while operating at a high temporal resolution.

Dynamic Reactive Manipulation: Many prior works in robot manipulation focus on quasi-static
tasks [17, 1]. However, there has been increased interest in solving tasks that are reactive and
dynamic in nature [47, 48, 49]. Previous works focus on explicitly learning the dynamics [49] or
using analytical models [47, 50] of such systems for achieving reactivity. These works often assume
access to the ground truth object pose and are limited to a single-task setting. In our work, we learn
how to perform such dynamic and reactive tasks using visual inputs in a multi-task setting.

3 Proposed Approach

In this section, we discuss our approach for learning a generalizable language-conditioned multi-
resolution multi-task policy for precise and reactive manipulation tasks. Below, we provide details
on how we utilize different sensing modalities and then delineate our training/inference and discuss
how our approach enables real time control for reactive tasks while generalizing to novel tasks.
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3.1 MResT: Multi-Resolution Architecture

Figure 2 shows our transformer based multi-resolution approach, which we refer to as MResT (for
Multi-Resolution Transformer). Our model takes as input multiple sensing modalities with different
spatial resolutions, i.e., statically-mounted third-person camera view, first-person camera view and
high frequency force-torque feedback. Each input is first processed separately before being fused
together at different temporal resolutions to output high frequency robot actions. Below we expand
on each component of our architecture.

Low-Spatial Resolution Model: We use a low-spatial resolution sensor (third-person camera) to
provide global task information to our agent. We use pretrained visual-language models to extract
this global information from third-person views as well as to enable language-conditioning in a
multi-task setting. Such pretrained models enable generalization to novel semantic features such
as new objects or novel language commands. However, to ensure the pretrained model maintains
its robustness we keep it frozen. However, using large VLMs to extract this generalizable global
information comes with the drawback that the inference speed is very slow (≈ 5Hz). We experiment
with two models CLIP [4] and MDETR [51] (language-conditioned DETR [52]), which use image-
level and object-level information respectively.

High-Spatial Resolution Model: To ensure reactivity in the face of slow inference of pretrained
VLMs, we use a smaller non-pretrained vision model (ResNet-18) [53] to process the first-person
camera view at a higher frequency (≈ 20Hz). This view provides us with high-resolution local spa-
tial information. To provide appropriate task-context to the first-person view we use small FiLM lay-
ers [54] for language conditioning. We train this model from scratch with augmentations (explained
in the next paragraphs) to extract local spatial features that are useful for precise tasks. While using
a small vision model enables faster processing it can still be insufficient for some highly dynamic
tasks. Hence, we process the force-torque feedback and proprioceptive information at a much higher
frequency (≈ 75Hz) using a small linear layer.

Multi-Resolution Sensor Fusion: We combine local and global sensing information (spatial reso-
lutions) mentioned above at different temporal resolutions based on the capacities of the respective
networks. Specifically, we reuse features (network activations) from lower frequency (third-person
and first-person views) networks to match the frequency of the highest frequency (force-torque feed-
back) network. Doing this ensures that the policy network outputs actions at a high frequency (equal
to the frequency of the force-torque feedback network), thus enabling real-time control.

In addition to temporal-sensor fusion we also spatially fuse local and global sensing information, i.e,
we fuse information extracted from third-person views with first-person view information and vice-
versa. We achieve this using two small camera-specific transformers together with cross-attention.
Each transformer uses self-attention within each modality (for its associated camera view) and cross-
attention with the other modality (other camera view). As shown in Figure 2, we readout the CLS
token from each transformer and concatenate them with the force-torque and proprioception embed-
ding. This concatenated embedding is then processed using a 2-layer MLP policy head to output the
robot actions. Please refer to the Appendix B for further details on the architecture.

Asymmetric Data Augmentations: Data augmentations have been shown to be helpful for single-
task learning of manipulation tasks [55, 38]. However, naively using image augmentations can
be detrimental for learning generalizable language-conditioned multi-task policies. This happens
because of two reasons. First, pixel-level image augmentations (e.g. color-jitter, grayscale) can
adversely affect language-conditioning since they can result in semantic changes in the overall scene.
For instance, a demonstration shows “move to red block” but pixel augmentations can change the red
block’s color. Second, the generalization performance of pretrained VLMs can be adversely affected
by naively combining features from other sensory modalities (e.g. by directly using features from
first-person views).

To avoid this loss of generalization and learn useful language-conditioned multi-task policies we
propose asymmetric data augmentations. Specifically, we propose to use two different sets of aug-
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Figure 3: Task settings for evaluating our proposed approach. Left: Precision tasks. Middle-left: Dynamic
tasks. Middle-right: Coarse tasks. Right: Real world pick and insertion tasks.

mentations. First, for third-person cameras we only use image-level augmentations such as ran-
dom crops, shifts that do not change the semantic content of the image. This avoids mismatch
between image-and-text instructions and allows visual-language grounding from pretrained VLM
to be utilized. Second, for first-person camera we use both image-level and pixel-level augmenta-
tions (color-jitter, grayscale). Since these augmentations lead to image-text mismatch this further
enforces our agent to use the third-person camera view for coarse localization, while only relying on
the in-hand view for finer precise motions. Using strong pixel-level augmentations on first-person
view further make the in-hand model invariant to texture but rely more on edges and corners [56].
This, as we show empirically, improves the generalization performance of our model on heldout
object variations.

Training and Inference: We use behavior cloning from expert demonstrations to train our model.
We record data from each sensor at their respective frequencies. Specifically, camera images are
recorded at 30 Hz and force-torque feedback at 250Hz. To match slower processing times of larger
models during inference we sub-sample the third-person camera images to 5Hz and first-person
camera images to 20Hz. We use AdamW [57] optimizer with learning rate 1 × e−4 and weight
decay 0.01. We train our model for 60 epochs, using a linear warmup, starting with learning rate 0,
for 5 epochs and then decay the learning rate using a cosine-scheduler. We use a GTX-1080Ti for
inference. Overall our architecture has ≈ 250M parameters. The pretrained vision-language model
has ≈ 150M parameters (for MDETR) with an inference time of ≈ 0.1 seconds. The first-person
camera model has ≈ 25M parameters with an inference time of 0.04 seconds. Finally, the force-
torque and proprioception model along with the policy head have a total of ≈ 250K parameters with
an inference time of ≈ 0.005 seconds. This allows the actions to be inferred at a max frequency of
≈ 200Hz although we use it at a reduced frequency of ≈ 75Hz which was sufficient for our tasks.

4 Experimental Setup

We first identify the key research questions that we aim to evaluate:

Q1: How does multi-spatial resolution sensing benefit learning language-conditioned multi-task
(MT) manipulation polices for precise tasks? Specifically, we aim to evaluate the utility of multi-
spatial resolution sensing for tasks that involve visual occlusions, partial observability, and precision.

Q2: How does multi-temporal resolution sensor fusion benefit learning reactive manipulation
tasks? Specifically, we evaluate how our architecture enables closed loop control for reactive tasks.

Q3: How well does our approach generalize to tasks with novel visual-semantic targets? Specifi-
cally, we evaluate our approach’s robustness to distribution shifts, e.g., object colors and geometries.
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Figure 4: Temporal resolution and robustness baselines used to compare our multi-resolution approach.

4.1 Environments

To evaluate the above questions we use three task settings, 1) MT-Precise: Precise manipulation
tasks, 2) MT-Dynamic: Dynamic manipulation tasks, and 3) MT-Coarse: Coarse table-top manip-
ulation tasks. Below we detail each environment and discuss its usage to answer above questions.

MT-Precise For precise manipulation we use 4 spatial precision tasks from RLBench [58] (see Fig-
ure 3 (Left)) – square block insertion, pick up small objects, shape sorting, and unplug usb. We use
this task domain to answer Q1. Specifically, we evaluate the need for multi-spatial resolution sens-
ing in manipulation tasks that require precise feedback and have partial observability, i.e., objects
can go out of view of the first-person camera.

MT-Dynamic: We use the CMU ballbot [59] platform to perform dynamic pickup tasks in sim-
ulation (Figure 3 (Middle-Right)). We choose ballbot since it is a highly dynamic robot with an
omnidirectional base (ball) capable of performing fast, reactive and interactive tasks. We consider
the task of dynamically picking up an object, which requires quick reaction to contact with the object
and grasping it to prevent toppling the object over. We use this setting to answer Q2.

MT-Coarse: We consider a canonical table-top manipulation setting ([60, 61]) involving coarse
pick-and-place manipulation tasks with diverse objects – blocks, shoes, mugs, cylinders. We use
this environment to answer Q1 and Q3. Specifically, for Q1 we contrast these coarse manipulation
tasks with high precision tasks to evaluate the utility of multi-spatial resolution sensing.

Real-World Setup: We evaluate our approach on two real-world tasks. For precise manipulation
(Q1) we use an insertion task to insert different blocks into cylindrical pegs (Figure 3 (Right top)).
We also evaluate generalization abilities (Q3) using a pickup task, wherein we use 2 train objects
and evaluate the learned policy on 8 objects with different geometry (shape, size) and visual (color,
texture) features. Additional details on each environment are provided in Appendix A

4.2 Baselines
We compare our approach against recent methods which focus on learning generalizable policies in
multi-task settings. We compare against RT-1[1] which proposes a transformer based policy and also
against BC-Zero [2] which uses language conditioning using FiLM [54]. However, both [1, 2] focus
on coarse manipulation tasks and operate at a single-resolution (both temporal and spatial). To the
best of our knowledge no prior work focuses on a multi-resolution approach for multi-task learning.
Hence, to highlight the benefit of each component of our approach and answer the questions posed
in Section 4 we modify our approach along different axes and propose additional baselines below.

Spatial Resolution baselines: To verify the utility of multiple spatial resolutions (Q1) we modify
our approach and remove one sensory modality at a time. We use π−Ih, π−I3, π−FT to refer to
policies which remove first-person (hand view), 3rd person view and force-torque respectively.

Temporal Resolution baselines: To answer Q2 we compare against single temporal-resolution
approaches (Figure 4 (Left)), i.e., where all modalities (including force-torque) operate at the same
frequency. We introduce two baselines, 1) πhigh-res : small models with fast inference for both
cameras (20Hz), and 2) πlow-res : larger models with slow inference for both cameras (5Hz).

Robustness baselines: We compare visual-semantic generalization ability of our approach (Q3)
against two baselines (Figure 4 (Right)): 1) πmulti-res-FT: Finetune the pretrained VLM model, 2a)
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π−Ih π−I3 π−FT Ours

MT-Coarse 74.5 41.0 81.8 82.0
MT-Precise 7.7 29.6 56.1 55.0
MT-Dynamic 65.8 27.5 33.2 73.6

Table 2: Results for multi-spatial resolution experi-
ments (Section 5.2). Here, − implies that we remove
this input from policy. Thus, π−Ih implies that the
policy only operates on third-person camera views
and force-torque feedback.

πlow-res πhigh-res Ours

MT-Coarse 82.0 81.0 82.0
MT-Precise 53.4 56.2 55.0
MT-Dynamic 4.2 12.2 73.6

Table 3: Results for multi-temporal resolution ex-
periments (Section 5.2). Here, both πlow-res and
πhigh-res are single-resolution approaches which run
at 5 Hz and 20 Hz respectively, while ours is a
multi-resolution approach.

πI3-Frozen: Uses only third-person camera (and force-torque) and keeps the pretrained model frozen.
2b) πI3-FT: Uses only third-person camera (and force-torque) but finetunes the pretrained model.

Metrics: We use task success as the evaluation metric and report mean success over all tasks.
During training, we evaluate the policy every 4 epochs and report average over top-5 mean success
rates across all evaluation epochs. For task generalization (Q3) we evaluate the train policy on
novel visual-semantic tasks not seen during training. For all evaluations we use 20 rollouts per task.
Further training details are provided in Appendix B.1.

5 Experimental Results
First, we evaluate the effectiveness of our multi-resolution approach against common multi-task
baselines, RT-1[1] and BC-Zero[2]. We then present results for each research question. For qualita-
tive results see: https://sites.google.com/view/multi-res-real-time-control.

5.1 Comparison to Multi-Task Baselines

Table 1 shows the results for the multi-task baselines RT-1[1] and BC-Zero[2] across all task
We note that for coarse manipulation tasks (MT-Coarse) these baselines, that use single cam-
era views, can perform quite well. This is because these tasks only require coarse local-
ization of the target object for task completion. However, for precise manipulation tasks
(MT-Precise), such baselines perform quite poorly since these tasks require fine-grained grasp-
ing (as many objects are ≈ 1cm in size) and insertion for successful task completion.

MT-Coarse MT-Precise MT-Dynamic

RT-1 81.0 12.5 4.5
BC-Z 74.1 7.8 4.8
Ours 82.0 55.0 73.6

Table 1: Task success comparison for multi-task
baselines across all task domains.

domains. On the other hand, our multi-resolution
approach, performs much better as it uses the first-
person camera view and force-feedback for finer
grasping and insertion. For dynamic tasks (MT-
Dynamic), our method considerably outperforms
the baselines (1.5x). This is because dynamic
tasks require reactive response to contact events.
Only our multi-temporal resolution approach uti-
lizes high spatial and temporal resolution sensing,
enabling fast response to contact events.

5.2 Additional Baseline Comparisons

Q1 – Spatial Resolution Experiments: We now compare against the spatial resolution baselines
discussed in Section 4.2. For this set of baselines all methods use multi-temporal resolution sensing
with high-frequency force-torque feedback. Table 2 shows results across all task settings. For MT-
Coarse we see that only using a first-person camera (π−I3) performs poorly. This is because of
partial observability in this view, i.e., the target object can be out of view and lead to task failure. On
the other hand, for MT-Precise (Row 2), only using first-person camera (π−I3) performs better (≈
2×) than using only the third-person camera (π−Ih). This is because MT-Precise tasks require finer
motions which are hard to perform from low spatial resolution (third-person) view only. Further, for
dynamic tasks (Row 3), using first-person views alone again suffers because of partial observability.
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Figure 5: Example failure case for MT-Dynamic (Ballbot) task. As can be seen in the figure, if the
robot approaches the object but does not react fast enough to the object contact, the block can topple
resulting, in task failure.

πI3-Frozen πI3-FT πmulti-res-FT Ours

MT-Coarse (Visual) 74.5 / 7.1 81.8 / 25.8 82.4 / 45.6 82.0 / 72.3
MT-Coarse (Geometry) 44.2 / 16.8 56.4 / 18.4 60.7 / 31.9 58.9 / 44.6
MT-Precise (Visual) 7.7 / 4.5 15.6 / 9.2 56.4 / 31.9 55.0 / 48.1

Table 4: Robustness experiment results, each cell shows train/heldout success rate (Section 5.2)

Q2 – Temporal Resolution Experiments: Table 3 compares against single-temporal resolution
baselines (πlow-res and πhigh-res ). Table 2 shows that for coarse and precise domains single-resolution
perform as well as our multi-resolution approach. This is because tasks in both domains are quasi-
static and hence fast reaction to contact events is not critical for task success. On the other hand,
for dynamic tasks (Table 2 bottom row), since fast response to contact events is necessary (to avoid
failures such as object toppling, see Figure 5) our multi-resolution approach performs better than
both πlow-res (5Hz) and πhigh-res (20Hz) since it incorporates force feedback at 75Hz.

Q3 – Robustness Experiments: Table 4 compares results (train / heldout) for visual-semantic
generalization against the robustness baselines in Section 4.2. As noted previously, for these exper-
iments we evaluate the trained policies on heldout environments (see Appendix B.1 for details). We
note that our approach, with frozen pretrained model, generalizes better than the finetuned model
πmulti-res-FT. This shows the ability of our approach to maintain the generalization capabilities of the
pretrained VLM as compared to the finetuned model that suffers from ’forgetting’ and representation
drift towards the training tasks. Additionally, from column-1 and column-2, we again note that the
finetuned πI3-FT model suffers a larger decrease in performance as compared to πI3-Frozen. Finally,
comparing πI3-FT against πmulti-res-FT, we see that even with finetuning our multi-spatial resolution
approach generalizes better because it can utilize first-person views for improved task success.

Real-World Experiments: We evaluate our approach in the real-world on two tasks, pickup and
peg-insertion [62]. Table 5 shows comparison against the spatial resolution baselines. We note that
our approach, with multi-spatial resolution, performs ≈ 3× better than the baselines on both tasks.

π−Ih π−I3 π−FT Ours

Pickup 7.5 (3.5) 20.0 (14.1) 67.5 (3.5) 75.0 (7.0)
Peg-Insert 10.0 (0.0) 12.5 (4.6) 42.5 (3.5) 67.5 (3.5)

Table 5: Mean (stdev) results (using 2 seeds) for multi-
spatial resolution for real world tasks.

We see that given limited demonstrations both
π−I3 and π−Ih fail to perform well (across both
tasks). On the other hand, removing force-
torque feedback π−Ih only affects performance
on insertion task (≈ 20% less) since this task
relies more on contact feedback. Additionally,
Figure 6 (c) figure plots the robustness result
for pickup task. As before we see that our ap-
proach with frozen model performs better. See website for qualitative results.

5.3 Ablations

We further ablate the different components of our proposed approach. Due to space limitations we
only summarize key findings and provide details in Appendix C.2.
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Pixel-Level Augmentations: We evaluate the effect of pixel-level augmentations (color jitter, gray-
scale) on the training and generalization of our MT-policies on MT-Coarse. Figure 6 reports results
on both training and heldout (novel) evaluation configurations. We see that while there is very
little difference in training performance, extensive pixel-level augmentations helps generalization
by close to ≈ 15%. While pixel-level augmentations change the semantics of the task, our multi-
modal approach is still able to complete the task because of visual-language grounded provided from
pretraining.

Spatial Sensor Fusion using Cross-Attention: We compare use of early fusion using cross-
attention with late fusion using concatenation. Figure 6 (a) (green bar) shows that using cross-
attention improves the performance by around ≈ 8% on both train and heldout configuration. Thus,
using cross-attention for multi-modal fusion is more effective than concatenation. However, we note
that cross-attention requires more parameters and has slower inference.

Effect of Pretraining: We also evaluate the effects of using pretrained-VLMs. Figure 6 (a) (yellow
bar) shows the training and heldout performance using ImageNet initialization which only has visual
pretraining and no vision-language pretraining. We see that while training performance matches our
approach the heldout performance decreases tremendously. This large decrease is due to missing
visual-language grounding since we use separately trained visual and language models. We also
evaluate the effects of using pretrained-VLMs.

6 Conclusion and Limitations

Our work proposes using sensing modalities at multiple spatial and temporal resolutions for learning
multi-task manipulation policies. Our multi-resolution approach captures information at multiple hi-
erarchies and allows the robot to perform both coarse and fine motions with high reactivity and real-
time control. To learn generalizable multi-task policies we further leverage off-the-shelf pretrained
vision-language models and freeze them to maintain their robustness. Our work has several limi-
tations. While our proposed framework is general for multi-spatial sensing we only rely on global
third-person camera and local first-person camera view. Further local sensing using vibro-tactile
sensors [63, 64, 65] was not explored. Further, it is unclear if our approach of using cross-attention
for sensor fusion will be optimal for more than 2 sensors. Additionally, while our multi-resolution
policy allows us to learn robust policies not all sensing modalities will be available for all tasks.
Thus, future work should explore adapting to scenarios with missing sensing modalities.
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A Environment Details

In this section we provide further details on the different environments used in our experiments.

A.1 MT-Coarse Manipulation

For coarse manipulation tasks we focus on a variety of objects including blocks, mugs, cups, and
shoes (both men and women shoes). As noted in the main paper, for these set of objects we focus
on pick-and-place skills. However, we note that we did experiment with more complex contact-rich
skills (e.g. pushing, stacking). However, we found the physics to be unstable with more complex
objects (e.g. cups). For instance, pushing cups would almost always topple them and roll over. For
future work, we hope to make our skills more robust.

Specifically, we use fixed size blocks with different semantic colors, 4 mugs, 4 cups and 4 shoes.
We use google scanned objects [66] to collect non-block objects and use mujoco [67] to simulate
our environment. We use the latest mujoco environments to import meshes into the simulator. Each
environment in this set of tasks is created by first selecting a target object-type and then selecting a
target object from the set of objects. We then select 3-5 distractor objects to fill the scene. These
objects are uniformly selected from the remaining objects.

A.2 MT-Precise Manipulation

As noted in the main paper for precise manipulation tasks we use the spatial precision set of tasks
from RLBench [58]. Overall, we use 4 tasks (see Figure 3 (Left)) – square block insertion, pick
up small objects, shape sorting, and unplug usb from computer. We avoid using the motion-planner
augmented approach for solving these tasks and instead opt for learning reactive closed-loop control
policies. We use the delta end-effector actions for our tasks. Additionally, we use standard front and
wrist mounted camera. along with proprioceptive and force-torque feedback as policy input.

However, directly using end-effector actions increases the policy horizon significantly. Moreover,
naively using the original input distribution for each task also requires learning full 6-DOF policies.
Both of these can significantly increase the data requirements to learn the manipulation policy. To
avoid this we restrict the starting distributions for each task such that the objects are spawned in a
slightly narrow region infront of the robot. We further make other task-specific changes, detailed
below, such that the robot can perform each task without changing hand orientations.

Insert Onto Square Peg: For this task we restrict the orientations of the square ring (blue object)
and the peg on which to insert. This allows the robot to perform the task without changing gripper
orientations. Further, we use a region of 40cm × 30cm infront of the robot to spawn both the base
and ring. Finally, the default task configuration provides 20 different peg colors, of which we use
the first 10 colors for training and remaining 10 colors for robustness experiments.

Pick and Lift Small: For this task, we again use a region of 40cm × 30cm infront of the robot to
spawn both all objects. We also restrict the orientation of each object such that it can be grasped
directly without requireing gripper orientation changes.

Shape-Sorting: The default configuration for the shape-sorting task considers 4 different shaped
objects (see Figure 3 Bottom-Left) – square, cylinder, triangle, star, moon. In the default RLBench
configuration most objects directly stick to the robot finger and are simply dropped into the hole for
task completion. However, with closed loop control we find that non-symmetric objects (star, trian-
gle, and moon) can have significant post-grasp displacement such that it is impossible to insert these
objects without changing gripper orientation. Hence, we exclude these two objects from evaluation
and only use symmetric square and cylinder objects.

Take USB Out: This task requires the robot to unplug a USB inserted into the computer. However,
the default configuration for this task requires 6-dof control. To avoid this, we create smaller com-
puter and USB assets and mount them vertically on the table such that the USB can be unplugged
without changing hand orientation. See Figure 3 (Bottom-Right) for visualization.
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Train set Test set

(A) Real-world setup for pickup and insertion tasks. (B) Examples objects for 
real-world pickup task

(C) Example objects for
coarse manipulation task

Figure 7: Left: Real World env setup with third-person (red) and first-person (blue) camera views.
Middle: Example objects set used for real-world pickup task. Right: Example objects used for MT-
coarse.

A.3 MT-Dynamic Manipulation

This task involves using the CMU Ballbot in simulation (PyBullet [68]) to perform a dynamic pick
up task. The task involves picking up a block that is placed on a table in front of the ballbot. We use
two blocks (red and blue) in this task and use language instructions to specify which object to pick
up. The initial conditions are set such that the table and objects are always out of the reach of the
ballbot arms and the ballbot has to roll forward to pick up the objects. We use a statically mounted
camera looking at the table and the ballbot as the third-person camera and the camera located on
the turret of the ballbot as the first-person camera. The turret tilt is adjusted such that the objects on
the table are initially out of the view of the turret camera and only when the ballbot starts moving
towards the table, the objects come into view. The third person camera is always able to view both
the objects and the ballbot. We use task space control to control the ballbot end-effector while a
center of mass balancing controller is always running in a high-frequency feedback loop to balance
the ballbot.

B Architecture Details

Section 3 discusses the overall architecture used in our work. To recall, our proposed architecture
uses a multi-resolution approach with multiple-sensors, each with different fidelity. We process
each sensor with a separate network which is conditionally initialized using a pre-trained vision-
language model. The output of each vision model is flattened to create a set of patches. For DETR
[51, 52] based model we use a ResNet-101 backbone and flatten the output layer into 49 patches and
add positional embedding to it. For CLIP [4] we use a ViT-B model and use hierarchical features
from the 5’th, 8’th and 11’th layer. Since MDETR already does vision-language fusion using a
transformer we directly use its output. However, since CLIP only weakly associates vision and
language at the last layer, we additionally use FiLM layers to condition the output. Our use of
FiLM is similar to previous models [69]. For each camera modality we use a small transformer
with multi-head attention. Each transformer uses an embedding size of 256 and 8 heads. We use
post layer-norm in each transformer layer. Further, in each transformer layer we use cross-attention
with the other camera. Overall we use 3 transformer layers for each camera modality. Our force-
torque and proprioceptive input is concatenated together and mapped into 256 dimensions using a
linear layer. We concatenate the readout tokens from each camera transformer and the force-torque
embedding. This 256 × 3 size embedding is then processed by 2 linear layers of size 512 which
output the robot action.

Input: For each of our camera sensor we use an image of size 224× 224. For proprioceptive input
we use the end-effector position of the arm. While for force-torque input we use the 6 dimensional
force-torque data. We use cropping augmentation for both camera sensors. Specifically, we first
resize the image to 226 and then do random crop with shift = 8. For, more aggressive pixel level
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Key Value

batch size 16
proprio and force torque embedding 256
camera-transformer embedding Dim. 256
camera-transformer feedForward Dim. 768
Number of transformer layers 3
learning rate 0.0001
warmup epochs 5
total epochs 60
optimizer AdamW
weight decay 0.01
scheduler cosine

Table 6: Hyperparameters used for our architecture and model training.

augmentations we stochastically apply grayscale and use color jitter with brightness ∈ (0.4, 0.8),
contrast ∈ (0.4, 0.8), saturation ∈ (0.4, 0.6) and hue ∈ (0.0, 0.5). These augmentations significantly
change the underlying visual semantics of the task.

B.1 Training Details

In this section we provide details on the demonstrations (for each environment type) used to train
our approach. Further, we also provide details on the train and heldout configurations used for
robustness evaluation.

MT-Coarse: As noted above in Appendix A.1, we use multiple different objects to train and evaluate
our policy. Each environment is created by first sampling a target object and then a set of distractor
objects. For each environment and skill combination we collect 20 demonstrations. Overall, this
gives us ≈ 1000 demonstrations across all tasks. We then learn one policy across all tasks.

MT-Precise: For spatial precision tasks from tasks from RLBench [58] we use 4 different tasks.
As discussed in Section A.2, each task has it’s own set of variations. For training our multi-task
policy we use try to balance the number of demonstrations from each task. For square peg insertion
(insert onto square peg) task we use first 10 variations for training and gather 25 trajectories per
variation. Each other task has less than 4 variations hence for each task we use 100 demonstrations
each for training. To test visual-semantic robustness for these tasks Section 5.2 we use the insert-
onto-square-peg task since only this task has any semantic variations. We use the remaining 10 peg
colors (i.e. 10 heldout variations) to test each approach.

MT-Dynamic: To collect expert demonstrations, we sample the locations of the objects on the table
in a 70cm*20cm region and sample the initial ballbot location in a 50cm*50cm region. We collect
50 demonstrations for each task setting (each block). As noted earlier, the third-person camera is
used at a frequency of 5Hz, the turret camera is used at 20Hz and proprioception and force-torque
feedback is used at 75Hz.

Real-World: For real-world tasks we collect data using teleoperation with a leap-motion device
which can track hand movements upto a 100Hz. We map these movements to robot movements
and collect proprioceptive and force-torque data at 75Hz, while both cameras are recorded at 30Hz.
To collect data for pickup tasks we use two blocks with different shapes and different colors. The
green and pink blocks in Figure 7 (Right) were used to collect all training data. While evaluation
happened on 8 other blocks, each with a different shape and color. For training our policies we
collect 60 demonstrations for each pickup variation and 50 demos for the insertion task. We note
that the initial state distribution for insertion was narrower than pickup and hence it required fewer
demonstrations.

Metrics: We use task success as the evaluation metric. Since we use a multi-task setting we report
mean success over all tasks. During training, we evaluate the policy every 4 epochs on all train
tasks. We report the average over top-5 mean success rates across all evaluation epochs. For task
generalization results (Q3) we use the trained policy and evaluate it on novel visual-semantic tasks
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which were never seen during training. Hence, for Q3 we report task success on novel unseen tasks.
For all evaluations we use 20 rollouts per task. Further training details are provided in Appendix B.1.

B.2 Implementation Details

In this section, we discuss our real-robot implementation details. In our implementation, the real-
time control loop is composed of a low-level task-space impedance controller and a high-level neural
network controller. The low-level controller operates at 1KHz using a real-time kernel and sends
control commands to Franka Panda’s control interface (FCI) [62]. Our neural-network controller
implementation can operate up to a maximum of 100Hz given communication latency. Specifically,
for our experiments we run the neural network controller at 75 Hz. We use fixed low impedance
values (Kp: 350) to avoid damaging the robot during fast execution of contact-rich tasks.

Neural network controller implementation: For our real-robot neural-network controller imple-
mentation we follow a multi-threaded architecture. Robot state information such as proprioceptive
data and force-torque data is published at 100Hz, while camera images are published at 30Hz. Each
sensor modality is appended to a separate fixed size time-stamped buffer. We process each modal-
ity independently in a multi-threaded manner by extracting the latest time-stamped data from the
respective buffer.

Camera images are processed on separate threads using their respective neural networks and we save
the network outputs for future processing. More specifically, we process images from third-person
camera using a large VLM and save a set of visual-language representations from its output in a
buffer. This thread is limited by the inference speed of the large VLMs and operates at 5Hz. We
process the image from the in-hand camera in a separate thread using a small ResNet based model to
get hand-camera image representations. On the same thread, we further process these hand-camera
image representations with the existing cached vision-language representations using cross-attention
layers to get multi-modal fused visual-language output which is added to a fixed size buffer. This
thread operates at 20Hz.

Finally, the high-level neural network controller (which runs on the main thread at 75Hz) concate-
nates the cached robot state information (force-torque, proprioceptive) with the latest fused multi-
modal features. The concatenated features are processed through a small multi-layer perceptron to
get the final action output which is sent to the low-level impedance controller.

C Additional Results

C.1 Additional Real-World Comparisons

In addition to real-world results in Table 5 we also tried out BC-Z and RT-1 on the pickup task in the
real world. Table 7 reports the average success rate and compares them to our method. We find that
BC-Z’s performance is much worse than our proposed approach. This is because BC-Z operates at
a single-resolution (both spatial and temporal) as it uses only a third-person camera. In the absence
of a first-person camera view it is often unable to accurately localize the target object and fails to
perform the final fine-grained motion to grasp the object and lift it up. Further, for RT-1 we find the
performance to be very poor. We believe this is because RT-1 uses tokenized actions which requires
us to discretize our continuous robot actions. Since we operate in the low data regime (120 trajec-
tories) such discretization leads to token imbalances during training and deteriorates the model’s
performance. Additionally, since RT-1, similar to BC-Z, uses single-resolution (i.e. third-person
camera only) we believe its performance suffers from similar challenges of inaccurate localization.
Furthermore, we evaluate visual generalization of the BC-Z and RT-1 policy on novel unseen objects
(and instructions). Since both BC-Z and RT-1 do not use a pre-trained vision-language model and
thus have no visual grounding for the text instructions they fail to perform well on unseen novel
objects. By contrast, our approach that utilizes a pretrained VLM generalizes well.
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Setup BC-Z [2] RT-1 [1] Ours

Train 12.5 0.0 75.0
Eval 5.0 0.0 71.1

Table 7: Real-World results for using
commonly used imitation learning (single-
spatial resolution baselines) for Pickup task.

πlow-res πhigh-res Ours

RealWorld - PegInsert 45.0 62.5 67.5

Table 8: Additional Results for multi-temporal
resolution experiments. As before, both πlow-res and
πhigh-res are single-resolution approaches which run
at 5 Hz and 20 Hz respectively, while ours is a
multi-resolution approach.

C.2 Additional Ablations

We further ablate on the different components of our proposed approach. For these set of results
instead of using all 3 environment suites for evaluation, we choose the most appropriate environment
suite for each component of our approach and evaluate on it.

Real-World Temporal-Resolution Comparison: We also ablate the effect of temporal resolutions
on real-word robot performance. Specifically, we evaluate single temporal-resolution approaches
(πlow-res) and πhigh-res for the peg-insertion task in the real-world. As before, to evaluate the learned
policy we run each episode for a fixed duration of 60 seconds. However, we use early termination
if the episode is solved successfully or the robot violates the desired workspace. Table 8 shows our
results. Given that the insertion task is not dynamic, πhigh-res performs similarly to our approach.
However, by comparison, (πlow-res) performs much more poorly (45% only). This is because a low-
temporal resolution policy is not very reactive and hence doesn’t respond fast to contacts made with
the wooden peg. Thus, it is often unable to find the appropriate location to insert the block into the
wooden peg. This can also be seen from qualitative videos (see success and failure videos), where
both success and failure scenarios are much less reactive.

Temporal-Resolutions: Finally, we also ablate the temporal frequencies for the MT-Dynamic tasks.
We ablate the effect of using camera inputs at low-resolution (third-person and in-hand camera inputs
at 5Hz) while only force-torque feedback is used at high-resolution (75Hz).

πlow-res-high-FT Ours

33.4 73.6

Table 9: Results for using
low-temporal resolutions for
camera-inputs (5Hz) and high-
temporal resolutions for force-
torque only (75Hz).

Table 9 below shows our results. From the table below, we observe
that the performance on MT-Dynamic tasks drops significantly when
using the camera views at a very low temporal resolution. From our
qualitative observations we note two common failure cases. First,
where the ballbot is sometimes unable to reach the block to pick up.
This is because, due to latency in the camera inputs (5 Hz), the policy
outputs sub-optimal actions. Upon receiving updated camera inputs
the policy tries to correct the trajectory. The overall resulting trajec-
tory is noisy and fails to reach the target object. Second, again due
to camera latency, the end effector does not align well with the target
object and ends up toppling the object while trying to grasp it.

19

https://youtu.be/mr15ELGZbFs
https://youtu.be/WlIM5fx5Zo4
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